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An important limitation of nonequilibrium pulling experiments/simulations in recovering free energy differ-
ences is the poor convergence of path-ensemble averages. Therefore, a large number of fast-switching trajec-
tories needs to achieve free energy estimates with acceptable accuracy. We propose a method to improve free
energy estimates by drastically lowering the computational cost of steered molecular dynamics simulations
employed to realize such trajectories. This is accomplished by generating trajectories where the particles not
directly involved in the driven process are dynamically frozen. Such a freezing is dynamical rather than
thermal because it is reached by a synchronous scaling of atomic masses and velocities keeping the kinetic
energy of each particle unchanged. The forces between dynamically frozen particles can then be calculated
rarely. Thus, it is possible to generate realizations of a process whose computational cost is not correlated with
the size of the whole system, but only with that of the reaction site. The method is illustrated on a simple model
system and its general applicability is discussed.
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I. INTRODUCTION

The estimate of free energy is of basic importance in
many fields of physics, chemistry, and biology. A rough clas-
sification of the methods devised for computing free energy
differences can be based on the possibility of sampling a
system at equilibrium or out of equilibrium. In the latter
context, an interesting scenario has been disclosed by two
nonequilibrium work relations, the Jarzynski equality �1�
�JE� and the Crooks fluctuation theorem �2� �CFT�, relating
the free energy difference between two thermodynamic states
to the external work performed in an ensemble of realiza-
tions switching the system between such states. A significant
difference between JE and CFT is that, while the latter gives
access only to free energy differences, the former can pro-
vide the whole potential of mean force �PMF� along a chosen
collective coordinate. In spite of this advantage, the JE is
known to furnish strongly biased free energy estimates
�3–6�, because the involved path-ensemble average depends
crucially on a small fraction of realizations with negative
dissipative work. With regard to CFT, Shirts and Pande
showed �5� that the Bennett acceptance ratio �7�, which may
be proved using the CFT �8�, can be significantly more ac-
curate than JE. As stated above, the main limitation of the
CFT is that only free energy differences can be recovered. To
tackle this problem, few methods have been proposed
�9–11�.

From the computational point of view, JE and CFT are
typically employed in numerical analysis of atomic trajecto-
ries obtained from steered molecular dynamics �MD� simu-
lations �4,12�. For most applications, the prior target would
be to improve the efficiency of path sampling, in order to
reduce the computational burden which is correlated indi-
rectly with the amount of work dissipated during the realiza-
tions. To this aim, several approaches have been developed.

They include biased path sampling �13–16�, generation of
non-Hamiltonian equations of motion �6� and optimal proto-
col strategies �17�. Significant speed-up was also obtained by
MD simulations with large time-steps �18�. A common limi-
tation of all these methods lies in their dependence on the
sample size, because all interparticle forces must be calcu-
lated to evolve the system in time. This means that, also the
particles not involved directly in the reaction process do af-
fect the overall computational cost.

In this article, we present a strategy for improving the
efficiency of fast-switching free energy estimates via JE or
CFT for large systems. The basic idea is to freeze the dy-
namics of a subset of particles which are supposed not to be
involved in the driven process, while leaving the particles
near the reaction site dynamically active. This is realized
with a synchronous scaling of the masses and velocities of
the involved particles by keeping their individual kinetic en-
ergy unchanged �theoretical aspects of the methodology are
presented in Sec. II�. Two possible implementations of the
mass-velocity scaling approach implying dynamical freezing
are proposed. Such procedures allow us to calculate the
forces between dynamically frozen particles rarely, with
strong improvement of the simulation speed-up. A third pos-
sible implementation implying dynamical warm up, instead
of freezing, is also discussed.

As an example of potential application, we may cite the
calculation of the binding free energy of two solvated mol-
ecules. In such a case we might “ignore” the dynamics of the
solvent molecules far away from the center of mass of the
two target molecules. Another example could be the calcula-
tion of the PMF related to processes of molecular traffic in
transport proteins. Here, the reaction site can be localized
around the protein channel. Of course, it is not always pos-
sible to distinguish a priori the portion of space where the
driven reaction occurs. Typical examples can be found in
most protein folding/unfolding processes. However, as we
will see, by updating dynamically frozen and unfrozen re-
gions at regular time intervals, it is possible to get a flexible
algorithm virtually independent on the dynamical evolution*riccardo.chelli@unifi.it
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of the system. As a test case we report the calculation of the
PMF of two particles solvated by a monoatomic fluid, con-
sidering the interparticle distance as collective coordinate
�Sec. III�. Both nonequilibrium work theorems, JE and CFT,
are taken into account for estimating the free energy profile.
Conclusions and perspectives of our approach are given in
Sec. IV.

II. THEORY

A. Background: Jarzynski equality and Crooks fluctuation
theorem

The framework in which we move is that of a classical
system at the temperature �−1 for which we can manipulate
some collective coordinate through an external parameter, �.
The Hamiltonian, H�x ;��, depends on generalized coordi-
nates x, and, parametrically, on �. An equilibrium state cor-
responding to a given value of �, realized by constraining the
collective coordinate, is described by the canonical distribu-
tion p�x ;��=Z�

−1 exp�−�H�x ;���, with free energy
F�=−�−1 ln Z�. The free energy difference, �F=Fb−Fa,
between two states corresponding to �=a and �=b can be
estimated using the JE �1�,

exp�− ��F� = �exp�− �W�� , �1�

where the work �W into Eq. �1�� exponential average, de-
noted by angular brackets, is calculated over an ensemble of
realizations switching � from a to b. A necessary condition
for Eq. �1� to be valid is that the initial microstates of the
realizations are sampled with canonical probability. If real-
izations for both directions of the process are available, then
�F can be estimated using CFT. Various formulations of
CFT can be given �19�. Here, we report a detailed form of
CFT, which is valid for each pair of time-conjugate phase-

space trajectories, �� and �� �

p��� �

p��� ��
= exp���W��� � − �F�� , �2�

where p��� � and p��� �� are the probabilities of observing the

phase-space trajectory �� and its time-conjugate �� � by sam-
pling the initial microstates from canonical distributions. The
quantity W��� � is the work performed on the system during
the phase-space trajectory �� . It is clear that the symmetry
condition on the phase-space trajectories is obtainable only if
time schedules of the control parameter in the forward and
backward directions ���t� and ���t�, respectively� are reverse
in time, namely, ��t�=����− t�, � being the pulling time. The
work entering into JE and CFT can be calculated as
W��� �=�0

��tH�x ;��t��dt. This definition, along with time

symmetry condition for �� and �� �, implies the equality

W��� �=−W��� ��. Note that, on the basis of the �F definition
given above, in Eq. �2� the trajectory �� is the one during
which the control parameter is driven from a to b. We point
out that a nondetailed form of the CFT involving work dis-
tribution functions related to forward and backward direc-
tions of the pulling process can be easily derived from Eq.

�2� �2,19�. Although this nondetailed form is computationally
more manipulable than Eq. �2� �12�, a more sound statistics
is provided by the Bennett-like CFT formula �8�.

B. Dynamical freezing via mass-velocity scaling

In our approach, the initial microstates of the realizations
are obtained by means of standard equilibrium MD simula-
tions using, e.g., constant-volume constant-temperature
�NVT� equations of motion. This stage does not differ from
the one usually employed in pulling MD simulations. The
innovation stems exclusively from the strategy devised to
carry out pulling trajectories, that, in addition to mechanical
external work, also accounts for mass-velocity scaling. Spe-
cifically, once the particle positions and momenta are ob-
tained by NVT sampling, we pass to Hamiltonian �constant-
volume constant-energy or NVE� dynamics for performing
pulling trajectories, during which instantaneous mass-
velocity scaling is applied to selected particles �keeping their
individual kinetic energy unchanged�. From the physical
point of view, the change in dynamical laws from NVT to
NVE-type corresponds to a break of energy exchange be-
tween system and thermostat. This situation is not new in the
context of pulling simulations. It is known since the work by
Jarzynski �20�, who showed that the instantaneous detach-
ment of the thermal bath from a system subject to pulling
processes does not affect free energy estimates obtained by
Eq. �1�. At contrary, care must be taken when mass-velocity
scaling is applied. We deal with a sort of NVE→NVK
→NVE dynamical swapping, where NVK denotes isokinetic
dynamics. During NVK dynamics, masses and momenta/
velocities of selected particles change instantaneously, while
all other dynamical variables do not vary. In such a case, JE
and CFT are still valid �indeed, initial microstates are
sampled with canonical probability�, though external work
must be determined using the proper form of the phase-space
compressibility. As NVE dynamics takes place, say, in the
time interval �t1 , t2�, the work performed on the system cor-
responds to H�t2�−H�t1�, where H�t� is the total energy of
the system at time t. If isokinetic mass-velocity scaling oc-
curs at a given time t0 in the interval �t1 , t2�, then additional
work must be taken into account. It is given by �21�

Wnvk = lim
�t→0

�U�t0 + �t� − U�t0 − �t� − �−1	
t0−�t

t0+�t

�nvkdt

= − �−1 lim

�t→0
�	

t0−�t

t0+�t

�nvkdt
 , �3�

where U�t� is the potential energy of the system and �nvk is
the phase-space compressibility associated to the NVK equa-
tions of motion producing the scaling event. In Eq. �3�, the
limit indicates that the scaling event is instantaneous.

Let us consider, for simplicity, a system made of N iden-
tical particles of mass m. Suppose that at time t0 �during a
pulling trajectory� we want to change the mass of L labeled
particles from the “natural” value m to the value m�, by
keeping their kinetic energy unchanged. This implies that the
coordinates of all N particles and the momenta of the N−L
unlabeled particles do not change during NVK dynamics,
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while momenta of the L labeled particles change according
to the isokinetic constraint. After mass-velocity scaling, NVE
equations of motion are restored with the new masses and
momenta. The equations of motion employed for mass-
velocity scaling are �22�

� ṗi = Fi − �ipi

ṙi = pi/m�t� 
 i = 1, . . . ,3L

� ṗi = Fi

ṙi = pi/m

 i = 3L + 1, . . . ,3N , �4�

where the index i refers to a single Cartesian component.
According to Ref. �22�, the parameter �i is introduced to
keep the kinetic energy related to the ith momentum con-
stant. The mass of the labeled particles, m�t�, is an explicit
function of time, though its time-dependence does not mat-
ter. In fact, as we will see, the relevant quantities entering
into play are only the initial and final values of the mass, m
and m�. In Eq. �4�, the last two formula are reported for
completeness and represent the �NVE� equations of motion
of the other particles. By definition, they do not enter in the
dynamics as mass-velocity scaling occurs.

To apply JE and CFT, the end microstates must be
consistent with the “native” equilibrium state of the
system, i.e., the state in which all masses are equal to m. This
means that, if we perform a mass-velocity scaling at
the time t0, then we need to perform the opposite scaling
before ending the trajectory, say at time t0�. In formula, the
mass of the labeled particles must vary in time as
m�t�=m+ �m�−m���t− t0���t0�− t� during the forward trajecto-
ries and as m�t�=m+ �m�−m���t+ t0−�����− t0�− t� during the
backward ones, where � is the pulling simulation time and
��x� is the Heaviside step function. The time-dependence of
m�t� in forward and backward directions of the process takes
into account the time-symmetry of conjugate trajectories that
must be satisfied for CFT to be valid. We now focus on the
estimate of Wnvk by means of Eq. �3�. The phase-space com-
pressibility arising from Eq. �4� is

�nvk = �
i=1

3N � � ṙi

�ri
+

� ṗi

�pi
 = − �

i=1

3L ��i + pi
��i

�pi
 . �5�

The application of the isokinetic constraint, i.e., dt�pi
2 /m�t��

=0, sets 3L conditions, one for each ṗi component

ṗi =
piṁ�t�
2m�t�

, i = 1, . . . ,3L . �6�

Combining the first line of Eq. �4� with Eq. �6�, we obtain an
expression for �i

�i =
Fi

pi
−

ṁ�t�
2m�t�

. �7�

Upon substituting Eq. �7� into Eq. �5�, we get the phase-
space compressibility �nvk=3Lṁ�t� / �2m�t��. Finally, ex-
ploiting �nvk into Eq. �3�, we obtain

Wnvk =
3L

2�
ln� m

m�
� . �8�

We remark that Eq. �8� could also be derived by derivation of
Eq. �6� with respect to pi and using the ensuing equation into
Eq. �5�. It is worth noting that, by scaling back the masses of
the L labeled particles from m� to m, the opposite work,
−Wnvk, is obtained. This follows immediately from Eq. �8�
upon swapping the masses. Considering the time-dependence
of m�t� discussed above, the global work arising from mass-
velocity scaling is null, regardless of the number of scaling
events.

It is now interesting to see how momenta and velocities of
the labeled particles change because of the scaling event. For
the case of mass-velocity scaling occurring at time t0, by
integrating Eq. �6� side by side, we get

pi�t0
+� = �m�

m
�1/2

pi�t0
−� , �9�

where pi�t0
−� and pi�t0

+� is the ith component of the momen-
tum before and after the scaling, respectively. The relation
existing between the velocity component before and after the
scaling event is obtained by exploiting the velocity definition
�second line of Eq. �4�� into Eq. �9�,

ṙi�t0
+� = � m

m�
�1/2

ṙi�t0
−� . �10�

For instance, if the mass quadruplicates upon scaling, i.e.,
m�=4m, then the momentum doubles, while velocity halves.
No other changes occur in the dynamics.

III. RESULTS: IMPLEMENTATIONS OF MASS-VELOCITY
SCALING

In this section, we present three possible implementations
of the mass-velocity scaling method in order of increasing
efficiency and generality. In the simplest implementation
�23�, we proceed by scaling the masses m and the velocities
ṙ of all atoms at the beginning of the realizations. As seen in
the previous section, for a given atom, this can be accom-
plished by setting m�=sm and ṙ�=s−1/2ṙ, where s is an arbi-
trary positive parameter that, in principle, can be different for
each atom. The realizations are then performed with the new
masses m� and with starting velocities ṙ� till reaching the
final value of �. In this context, s can simply be viewed as an
additional external parameter acting on the system together
�, but, at variance with �, with any net effect on the total
work. In fact, at the end of the realizations, we must restore
the natural value of the mass, m, for all particles, thus per-
forming the opposite work �see discussion in Sec. II B�. Dur-
ing pulling realizations, the work is only from � changes and
can be computed without specific care about the initial
“shock.” It is interesting to note that, a uniform mass-
velocity scaling �same s for all particles� is dynamically
equivalent to an instantaneous change of �t �the time-step�
by the quantity ���t�=�t�s−1/2−1�. Therefore, a scaling
down of the masses, s	1, corresponds to a time-step in-
crease and vice versa. This means that our approach, limited
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to a uniform scaling down of the masses, is complementary
to the technique proposed by Lechner et al. �18�, which is
based on large time-steps for improving the MD simulation
speed-up. However, it is known that an increase in time-step,
while increasing the speed-up of a simulation from one side,
on the other side increases dissipation correlated with the
energy drift coming from inaccurate integration of the equa-
tions of motion �18�. The same effect is observable as the
masses are reduced, because of the globally faster dynamics.
The advantage of the mass-velocity scaling approach stems
from the fact that a faster dynamics accelerates the atomic
rearrangements, eventually increasing the reversibility of the
nonequilibrium process. Furthermore, we should consider
that, in a generic system, the atomic masses can be very
different. In such a case, we could take advantage of the fact
that the time-step is usually tuned to integrate accurately the
fastest motions, which are often correlated with the lightest
atoms. This implies that a scaling down of the masses limited
to heavy atoms may not affect significantly the dissipation
arising from energy-drift �23�. We point out that in the mass-
velocity scaling method, invertible phase-space mapping,
which is a necessary condition for the validity of both JE and
CFT, is always generated.

Although the efficiency of the approach illustrated above
is supported by the successful application of the �comple-
mentary� large-time-step method �18�, few technical aspects
may severely limit its performances. The most crucial one is
certainly correlated with the system size, whose increase has
two basic drawbacks: the increase in energy-drift-related dis-
sipation and the computational overhead due to the evalua-
tion of the interatomic forces. To tackle the problems arising
from the system size, we could try to scale the masses up of
the atoms that, in the initial microstate, are far away from the
reaction site �second implementation�. Such a scaling must
practically stop the motion of these unimportant atoms so
that the forces between them do not need to be calculated
during the following dynamics. Care must be taken when
selecting the particles that undergo dynamical freezing. For
instance, if we consider a process where dissipation is due to
interactions between the escorted solute and the solvent �in-
deed, a common situation in pulling experiments or calcula-
tions�, then we have to keep the solute and few solvent par-
ticles dynamically active, while keeping all other solvent
particles dynamically frozen. In principle, given the distin-
guishability of the particles in MD simulations, we could
label a given number of solvent particles, chosen randomly,
and then keep them dynamically active in each pulling real-
ization. This procedure would preserve the symmetry of
mass-velocity scaling in forward and backward directions of
the process and hence the validity of CFT even in its nonde-
tailed form. However, using this protocol, the price we need
to pay is the loss of control on the dissipated work. As stated
above, an alternative approach could be to select the solvent
particles on the basis of a geometric criterion, for example,
their distance from the center of mass of the solute particles.
Such a solution would allow to reduce the dissipated work
significantly. Unluckily, it does not guarantee time-symmetry
of mass-velocity scaling in forward and backward directions
of the process. In spite of this, it is evident that the distance-
based criterion could be a valid approximation as dynami-

cally active particles are localized in a region large enough to
embed the space where most dissipation occurs. Therefore,
the reliability of this approach �in the context of CFT� is
based on the reasonable assumption that dissipation is a local
phenomenon in nonequilibrium processes. As we will see,
this is just the case of our model-system simulations. As the
JE is concerned, the issue of time-symmetry of mass-velocity
scaling is not a problem at all. In fact, using JE, we do not
need to satisfy the above requirement in the practice. If we
use the described geometric criterion, then we shall obtain an
ensemble of realizations with different time schedules for
mass-velocity scaling. However, if from the one side JE is
strictly valid for path-ensemble averages realized with well-
established time schedule of the control parameters �includ-
ing mass-velocity scaling�, on the other side we may always
calculate the path-ensemble average over an arbitrary collec-
tion of time schedules. In other words, the path-ensemble
average on the right hand side of Eq. �1� can be performed
simultaneously over pulling trajectories and time schedules
as well. This makes our approach theoretically correct for JE.

We illustrate the method on the binding process of two
particles immersed into a Lennard-Jones fluid. This model
system contains much of condensed-phase physics and may
be viewed as an elementary example of molecular docking.
Specifically, by using steered MD simulations, we calculate
the PMF along the distance r between two particles �the
solute-particles� interacting through a double-well potential
of the form V�r�= �3�r−1�2−0.3��r−3�2. All quantities are in
reduced units. The two solute-particles and the 6798 solvent-
particles have the same initial mass m and evolve in a cubic
box with standard periodic boundary conditions. The
Lennard-Jones potentials for the solvent-solvent and solute-
solvent interactions are identical and vanish in the distance
range 3.0–3.5 through a cubic switching function. The equa-
tions of motion are integrated with a time-step of 5
10−3.
Steered MD simulations are carried out using the external
potential 5000�r−��2 to switch the system between the end
states �=0.5 and �=3.5. The initial microstates for 5000
forward and 5000 backward realizations are sampled from
equilibrium NVT simulations, setting the temperature to 0.8
and the density to 0.85. All realizations are performed at
constant pulling speed of 0.3 with NVE equations of motion.
The criterion adopted for dynamical freezing, also described
above, is based on the distance of the solvent-particles from
the centroid of the solute-particles at the initial time. One
mobility sphere including the solute-particles and several
solvent-particles is thus created. Various cutoff radii for the
mobility sphere are tried �Rm=4, 6.9, and 10�.

In Fig. 1�A� we report representative results of our nu-
merical tests, namely, the free energy profile estimated by the
JE �Eq. �1�� in the forward ��JEf ;�=a�0.5→�=b�3.5�
and backward ��JEb;�=b→�=a� directions of the process,
and by a CFT-based estimator �9�

�CFT��� = − �−1 ln�� nFe−�WF���

nF + nBe��−WF�b�+�F��
F

+ � nBe��WB�a�−WB����

nF + nBe��WB�a�+�F��
B
 , �11�

where WF��� is the work performed on the system to switch
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the control parameter from a to � in the forward realizations
and WB��� is the work performed on the system to switch the
control parameter from b to � in the backward realizations.
The angular brackets indicate path-ensemble averages in the
forward and backward directions calculated over nF and nB
realizations, respectively. Finally, �F=�CFT�b� is the free
energy difference between the end states and is calculated via
Bennett-like formula �8�. In the figure �panel �a��, all free
energy profiles estimated by dynamical freezing method are
calculated by setting Rm=4. The PMFs calculated with stan-
dard algorithms, i.e., without dynamical freezing, are also
drawn for comparison. The exact PMF, �TI, is from thermo-
dynamic integration. The error on �CFT is calculated by fit-
ting the free energy offset �11� with a least-squares procedure
aimed at minimizing the quantity

�2 = �b − a�−1	
a

b

��CFT��� − �TI����2d� . �12�

For the �JEf and �JEb profiles, the offset is taken to satisfy
the equalities �JEf�a�=�TI�a� and �JEb�b�=�TI�b�. In Table
I we report � for all test cases. The basic outcome gained

from Fig. 1�A� and from the table is that the accuracy of
dynamical freezing technique is comparable to, or even bet-
ter than, the standard algorithm. The most relevant difference
lies in the simulation speed-up, which is also reported in the
table in terms of the average ratio, Nsa /Ndf, between the
number of interparticle contacts accounted for in the calcu-
lation with standard algorithm �Nsa� and with dynamical
freezing �Ndf�. The gain in speed-up is even larger than 20
and clearly depends on the ratio between dynamically frozen
and unfrozen particles. It is remarkable that a further increase
in the system size, while increasing Nsa, does not affect Ndf
with obvious improvement of computational efficiency.

Although the fixed-mobility-sphere implementation gives
satisfactory results for our model, a more general approach
that does not need the prior knowledge of the dynamical
behavior of the system would be preferable. To this aim, we
resort to a third implementation that can be summarized as
follows: �1� centers for mobility spheres are identified on the
basis of the collective coordinate, and in particular, by con-
sidering the atoms that are mostly �directly or indirectly�
involved in the escorted dynamics. It is evident that also this
implementation requires some, however smaller, degree of
chemical intuition. For instance, in the complex process of
protein folding/unfolding, the choice is straightforward: the
mobility spheres can be centered on each protein atom. In
our model, two mobility spheres, centered on the solute-
particles, are defined. �2� Once the atoms bearing the mobil-
ity spheres are established, the masses of the particles out of
the mobility spheres are scaled up to a very large, but finite,
value �in our tests s=1010�. �3� Then a period of �-guided
evolution is performed for all particles, including the frozen
ones. The aim of this procedure is to guarantee the correct
time-evolution of the velocities of the frozen particles, a con-
dition required to apply correctly next mass-velocity scaling
�see point 4 below�. However, during this period, the forces
between frozen particles are not calculated, their initial val-
ues being used into equations of motion. �4� At a given ar-
bitrary time, the list of frozen and unfrozen particles is up-
dated on the basis of the new positions of the atoms bearing
mobility spheres. Therefore, particles may pass from the dy-
namically frozen region to some mobility sphere �with ensu-
ing mass-velocity scaling�, and vice versa. At this step the
forces between frozen particles are calculated again for the
following dynamics. Steps 2, 3, and 4 are then repeated, till
the end of the realization is reached. Finally, we restore the
natural mass m of the particles, thus vanishing the work aris-
ing from mass-velocity scaling. Of course, this last operation
does not require additional calculations because the work is
given by an analytic expression �Eq. �8��. We point out that
this implementation, as the second one �see discussion
above�, is applicable, in principle, only combined to the JE.
On the contrary, due to loss of time-reversal in mass-velocity
scaling protocol, CFT does not hold. However, for the same
reasons supporting the validity of the second implementa-
tion, the CFT is valid in the limit of very large mobility
spheres, because the altered dynamics does not affect dissi-
pation. Practically, we find that this limit is reachable using
mobility spheres with a radius comparable to the distance to
which interparticle interactions vanish. We remark that other
similar geometric criteria could be used. For instance, by

TABLE I. Error on the potential of mean force estimates �JEf,
�JEb, and �CFT using standard algorithm and dynamical freezing
�2nd and 3rd implementations�. Last column: speed-up by dynami-
cal freezing in terms of the ratio Nsa /Ndf. The quantity Rm stands for
the radius of the mobility spheres �see text for details�.

�
��JEf�

�
��JEb�

�
��CFT� Nsa /Ndf

Standard algorithm 5.7 5.8 0.7

2nd impl. Rm=4 4.3 3.3 0.6 20.2

2nd impl. Rm=6.9 4.2 5.1 0.7 4.5

2nd impl. Rm=10 3.4 5.3 0.9 1.6

3rd impl. Rm=3 2.3 5.0 0.8 31.5

3rd impl. Rm=4 3.8 6.4 0.6 15.5

3rd impl. Rm=6.9 3.2 3.8 0.7 3.8

3rd impl. Rm=10 4.1 5.1 0.7 1.5

1 2 3

λ

-30

-20

-10

0

10

20

30

40

PM
F

Φ
CFT

1 2 3

λ

Φ
CFT

Exact profile

Standard algorithm

Dynamical freezing

A B

Φ
JEfΦ

JEf

Φ
JEb Φ

JEb

FIG. 1. Potential of mean force as a function of �, calculated
using the 2nd and 3rd implementations of dynamical freezing
method �panels A and B, respectively�. For the sake of clarity, �JEf,
�JEb, and �CFT are shifted. Dashed lines: standard algorithm. Dot-
dashed lines: dynamical freezing. Solid lines: exact potential of
mean force. The potential of mean force from dynamical freezing in
panels A and B is obtained using Rm=4 and Rm=3, respectively.
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updating mobility spheres in order to keep the number of
dynamically active solvent-particles constant.

In Fig. 1�B� we report the results obtained using mobility
spheres centered on the solute-particles and updated every
2.5 time units �three times during a pulling trajectory�. The
possibility of updating the mobility spheres allows us to
adopt cutoff radii smaller than those used in the fixed-
mobility-sphere technique. In the figure, we draw the data
obtained with Rm=3. �JEf, �JEb, and �CFT from standard
algorithm and �TI are also drawn. The usual error and
speed-up are given in the table for all performed tests. Also
in this case, the accuracy of dynamical freezing compares to
that of standard algorithm. The slightly lower speed-up for a
given Rm with respect to the fixed-mobility-sphere imple-
mentation arises from the not complete overlap of the two
mobility spheres during the realizations. The speed-up ob-
tained with Rm=3 is however impressive, considering the
almost unchanged accuracy.

IV. CONCLUSIONS

In this article, we present a computational approach for
improving the efficiency of fast switching free energy esti-
mates obtained by the Jarzynski equality or the Crooks fluc-
tuation theorem. The method we propose is distinct from
other computational strategies devised to sample or to create
trajectories with low dissipation �6,13–16�. Rather, we
modify the dynamical behavior of “unimportant” particles by
changing, with a sort of instantaneous alchemical transfor-

mation, their masses and velocities without affecting the total
energy. Speed-up arises from the fact that no mutual interac-
tions need to be calculated among dynamically frozen par-
ticles. There is a strict conceptual analogy between dynami-
cal freezing and quantum mechanics/molecular mechanics
�QM/MM� method. In the latter case, in fact, unimportant
particles, typically those far from the reaction site, are treated
with classical �and hence computationally cheap� potentials,
while the important particles undergo the most accurate
quantum mechanical treatment. The flexibility of dynamical
freezing allows for the treatment of a variety of problems in
addition to mechanical pulling simulations. We expect it is
appropriate to various thermodynamic processes like particle
insertion in a fluid or alchemical transformations in general.
Moreover, since dynamical freezing does not alter the algo-
rithms usually employed in steered MD simulations, it is
prone to be combined with other approaches proposed for
improving the efficiency of free energy estimates. For the
same reason, implementation of dynamical freezing in MD
simulation codes is rather simple.
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